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We investigate several unsteady two-dimensional models of increasing complexity for the nonlinear
evolution of the temporally growing mixing layer. In the simplest model, we use a subharmonically per-
turbed point vortex row which serves initially to identify certain key dynamical and kinematic aspects of
the transition process, in which small scales in the flow are rapidly generated as a result of the vortex
pairing process. A slightly more realistic vortex blob model is used at the next level. Finally, Navier-
Stokes calculations are performed in order to identify which features are artifacts of the earlier models,
and which ones are likely to be inherent to the physics. An important kinematic aspect of the transition,
present in all of the models for small subharmonic perturbations, is a change in the topology of the
streamline pattern when viewed in a rotating reference frame. This topological change contributes to
the formation of spiral arm structures seen in other work and consequently to the intense production of
small scales. For larger subharmonic perturbation amplitudes, this effect does not occur. We attempt to
establish a connection between the aspects of our two-dimensional models and the findings of other au-
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thors in three-dimensional computations and experiments.

PACS number(s): 47.27.Cn

I. INTRODUCTION

Experimental and computational research carried out
in recent years has demonstrated the existence of a cer-
tain stage in the evolution of the plane mixing layer dur-
ing which the production of small scales increases rapid-
ly, thereby leading to the emergence of turbulent flow.
This process is typically accompanied by a dramatic in-
crease in the mixing rates of the two streams, hence this
event has become known as the “mixing transition” in
the literature (Konrad [1] and Breidenthal [2]).

Experimental work by Huang and Ho [3] as well as by
Zohar [4] indicates that this generation of small scales is
correlated to the growth of subharmonic streamwise per-
turbations and to the resulting merging of spanwise
coherent structures, which is known to be the dominant
growth mechanism of plane mixing layers (Winant and
Browand [5]). Employing the peak-valley counting tech-
nique, they observe that fine scale turbulence occurs first
in the cores of the streamwise vortices that are known to
form in the braid region in between the spanwise rollers
(Bernal [6], Corcos and Lin [7], Lin and Corcos [8], Ber-
nal and Roshko [8], Ashurst and Meiburg [10], Lasheras
and Choi [11]). Furthermore, they find that the small
scales occur first in between pairing spanwise vortices,
rather than in between vortex pairs. Hence, they specu-
late that the strain field in between merging vortices
triggers the transition by acting on the streamwise struc-
tures.

*Corresponding author. Permanent address: Department of
Aerospace Engineering, University of Southern California, Los

Angeles, CA 90089-1191. FAX: 213-740-7774. E-mail:
eckart @ spock.usc.edu

1063-651X/95/52(2)/1639(19)/$06.00 52

Moser and Rogers [12,13] present direct Navier-Stokes
simulations for a temporally growing three-dimensionally
evolving plane mixing layer that are consistent with the
above experimental findings. Their calculations of mix-
ing layers undergoing up to three pairings show the pair-
ing process to inhibit the growth of infinitesimal three-
dimensional (3D) perturbations. At the same time, the
authors observe the formation of thin sheets of spanwise
vorticity that are subject to a secondary rollup instability.
Their calculations furthermore exhibit the formation of
spiral arms of the spanwise vorticity, similarly to the
findings of Martel, Mora, and Jimenez [14]. Moser and
Rogers furthermore report that the long time evolution
of finite amplitude three-dimensional perturbations is
surprisingly similar to that of infinitesimal perturbations,
implying that the three-dimensional evolution is to a
large extent dictated by the evolution of the underlying
two-dimensional flow.

In summary, the existing body of knowledge indicates
the importance of both the vortex pairing process result-
ing from streamwise subharmonic perturbations and the
streamwise vorticity generation in the braid region be-
tween the Kelvin-Helmholtz rollers. The conceptually
simple scenario described by Bernal and Roshko [9] for
the evolution of initially weak steamwise braid vorticity is
based on the deformation that a passive wavy spanwise
line element undergoes in the steady flow field of a row of
Kelvin-Helmholtz vortices. The main goal of the present
investigation, then, is to extend the Bernal-Roshko model
to the temporally evolving two-dimensional subharmoni-
cally perturbed mixing layer. In other words, we aim to
describe both qualitatively and quantitatively the defor-
mation of passive line elements in subharmonically evolv-
ing mixing layers, in order to obtain insight into the
mechanisms that govern the evolution of initially weak
streamwise vorticity. Put differently, our emphasis lies in
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analysis of simple two-dimensional flow models for infor-
mation about three-dimensional phenomena.

To elucidate the way in which a subharmonic pertur-
bation can enhance the production of two- and three-
dimensional small scales, we first employ a simple two-
dimensional streamwise periodic mixing layer model
discretized into point vortices or finite core vortex blobs,
and perturbed in a subharmonic fashion. We let the vor-
ticity field evolve under the assumption of inviscid dy-
namics, based on the experimental and computaticnal ob-
servation that the mixing transition occurs beyond a
threshold Reynolds number range, i.e., that it is an essen-
tially inviscid phenomenon (Koochesfahani and Dimo-
takis [15], Moser and Rogers [13]). Subsequently, we
present results of Navier-Stokes simulations to further
clarify which aspects of the point vortex and vortex blob
models are likely to be artifacts of the approximation,
and which are inherent in the physics.

In particular, Sec. II contains the results for the invis-
cid vortex models. We focus on two distinct flow regions.
The first one is the region surrounding the vortex centers
where fluid particles undergo both periodic and quasi-
periodic motion, the details of which are addressed in
Appendix A. Further from the vortex centers is a chaot-
ic region which we study by means of Poincaré maps and
calculations of fluid stretching rates, related to the
Lyapunov exponent. By examining the topology of the
streamline pattern in a rotating reference frame, we de-
scribe a topological transition that we believe is primarily
responsible for spiral arm structures and small scale de-
velopment. This topological transition exists for both
point vortices and vortex blobs. Section III analyzes a
series of Navier-Stokes simulations. The stretching and
folding of interfaces is described and compared with the
preceding sections and, again, the topological transition
seen in the preceding two models is identified. Finally, in
Sec. IV we compare some of our findings with results
seen in other work.

I1. INVISCID VORTEX MODELS

A. Point vortices

We begin our analysis of transition processes in mixing
layers by considering the simplest model of the flow field
that exhibits the same qualitative behavior as more de-
tailed simulations. This approach offers several advan-
tages. First, it is easier to determine potentially relevant
mechanisms for the transition processes, whose existence
in more realistic simulations can then later be checked.
In addition, if these mechanisms persist in different mod-
els of the flow, this indicates their robustness, i.e., that
they are not an artifact of the simulation method. In
light of this, we first simulate the subharmonic pairing
dynamics by representing the individual vortices in the
mixing layer as point vortices.

1. Flow simulation

The shear layer is initially configured as a row of point
vortices of equal strength T" evenly distributed along the
horizontal axis y=0, at positions x=---—1.5,
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—0.5,0.5,1.5,... (Fig. 1). To simulate a subharmonic
pairing event, we displace each vortex a distance X,
along the x axis in alternating directions. The flow field
can then be advanced in time by moving the point vor-
tices with the velocity (x,..,),.,) induced upon them by
all other vortices. The symmetry properties of the flow
lead to

. -r sinh(27y )
Xyor = , 2.1
4 cosh(2my,, ) —cos(2mx,,,)
. r sin(27x o )
Pvr =" : (2.2)

4 cosh(2my ., ) —cos(2mx . )

where x .. and y,. refer to the location of the point vor-
tex in the interval 0 <x < 1. The influence of the second
vortex within the pair, as well as of all periodic images, is
accounted for implicitly by the above equations. We in-
tegrate the point vortex positions by means of a standard
fourth-order Runge-Kutta scheme. The time-dependent
flow field has the form of corotating vortex pairs which
are a distance D=(1—2XX, ) apart from each other
when crossing the x axis. The related time-dependent
streamline pattern is shown in Fig. 2 at several times over
half a period. As expected, the two classes of symmetry
points, (0,0),(£1,0), remain free stagnation points for all
times. The stagnation points at x=--- —3,—1,1,3,...
remain connected at all times by separatrices whose
shapes vary periodically in time. Embedded in the en-
closed region are the two point vortices rotating around
each other, as shown by the rotating figure eight pattern.
The value of X, represents the strength of the subhar-
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FIG. 1. Schematic diagram of a rotating vortex pair a dis-
tance D apart, and a particle starting a distance L from the left
vortex.



FIG. 2. Time-dependent streamline pattern for the subhar-
monically perturbed point vortex row (Xpert =0.3) at times
t=0.0, 0.57, and 1.14, i.e., after 0, 0.2, and 0.4 periods.
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monic mode relative to the fundamental mode; as X
increases, the subharmonic mode is stronger.

It is worthwhile to point out the similarity between this
flow field and the perturbed flow fields considered by
Beigie, Leonard, and Wiggins [16] and Rom-Kedar, Leo-
nard, and Wiggins [17]. In our model, the periodic per-
turbation arises naturally from the oscillations of the
neighboring pairs, while theirs is imposed explicitly.

The motion of Lagrangian particles can be evaluated
along with that of the point vortices according to

pert

. —T sinh[7(y —pyo,)]
*T cosh[m(y —y,or )] —cos[m(x —x,.)]
T sinh[7(y +po.)] 2.3)
4 cosh[m(y +y,o)]—cos[m(x +x,,.)] ~
T sin[7(x —x )]
YT cosh[m(y =y )] —cos[m(x —x )]

r sin[7(x +x,0.)]

+T cosh[m(y +yyor )] —cos[m(x +x,,)] 24

The above equations are integrated using a fourth-
order Runge-Kutta scheme. The flow field causes the
vortices to move in closed orbits whose periods depend
on the magnitude of the subharmonic perturbation. This
periodicity can be used to reduce the number of computa-
tions in the following way. The location of the vortices is
computed and stored for all time steps up to one period.
These values are then used to compute the fluid particle
velocity for successive periods. From these computa-
tions, we find two distinct regions in the flow field in
terms of the particle behavior. Around each vortex
center is a nearly circular region in which particles un-
dergo periodic and quasiperiodic motion. The size of this
region has a characteristic radius L. Asymptotic esti-
mates of Ly and an extensive characterization of the
periodic and quasiperiodic motion observed in this region
are presented in Appendix A.

2. Chaotic regions

Particles that are initially placed a distance L >Ly
from a vortex center typically undergo a chaotic motion,
shown in the series of Poincaré sections of Fig. 3. The
sections are computed by choosing 80 initial conditions
and iterating over 100 vortex periods. In order to elimi-
nate any artifacts due to the particular choice of the ini-
tial conditions, only data beyond the first ten periods are
shown. Displayed in Fig. 3 are plots representing in-
creasing strength of the subharmonic mode, with X,
ranging from 0.1 to 0.4. In the case of the weakest
subharmonic component (X.,=0.1), the periodic and
quasiperiodic zones around the vortex centers are evi-
dent, otherwise no particular structure is seen. Particles
starting far enough away from the vortex centers enter
into a chaotic region and, in general, can easily escape
the window —1=<x <1. As the subharmonic mode be-
comes stronger, island structures above and below the
center line appear, as shown for X pm=0.25, 0.3, 0.35,
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FIG. 3. Poincaré sections for point vortex model. Plots are
shown for X, =0.1, 0.25, 0.3, 0.35, and 0.4.

0.4. In addition, a cat’s eye structure begins to form. It
is interesting to note that as the subharmonic perturba-
tion approaches 0.5, particles are likely to stay within one
periodic window. Complete trapping occurs in the ab-
sence of a subharmonic perturbation, i.e., for an unper-
turbed, steady row of point vortices. In that case, a parti-
cle would simply travel along a time-independent stream-
line within the cat’s eye, i.e., its trajectory would be
periodic, hence it would never leave the region enclosed
by the separatrices. Trapping also occurs in the limit of
large perturbations, X . —0.5, where macroscopically
the flow appears as a row of point vortices of twice the
circulation separated by twice the distance as in the un-
perturbed case. From Fig. 3 we observe that the chaotic
regions are most pronounced for weak values of the
subharmonic perturbation.

Figure 4 shows a plot of the largest Lyapunov ex-
ponent, A(A=lim,_ ,1/t{In[l(2)]/1(t=0)}) for the
point vortex model as a function of X .,. The largest
Lyapunov exponent can be calculated by tracking the dis-
tance / between two particles that are very close to each
other initially and letting them evolve in time. Since the
distance grows exponentially, it is necessary to renormal-
ize the distance periodically so that a preset threshold is
never exceeded. See Refs. [18,19] for a detailed discus-
sion on computations of Lyapunov exponents. The
values shown in Fig. 4 are average values taken from
several different initial conditions which are then allowed
to evolve in time for a duration equal to 80 periods of
vortex motion. From the figure, it is clear that for the
point vortex model the Lyapunov exponent increases
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FIG. 4. The Lyapunov exponent A as a function of X, for
various values of the blob radius o. The point vortex model
corresponds to o =0.0.

with the size of the perturbation.

We next take a closer look at the implications of the
chaotic nature of the flow field on the short-time dynam-
ics. We begin by considering a point vortex row with an
intermediate subharmonic strength, with X .. =0.3.
This is displayed in Fig. 5, which shows the evolution
over one period of a Lagrangian line element initially
placed between (—0.05, 0) and the origin, along with the
instantaneous streamline pattern. At ¢t =0, the line ele-
ment is represented by 50 particles. Subsequently, as the
line element becomes increasingly stretched, particles are
continuously added in order to maintain an adequate
resolution, so that after one period the element contains
on the order of 20000 particles. The line element quickly
aligns itself with the extensional direction of the local
strain field, i.e., with the direction of the streamline along
which particles move away from the free stagnation
point. This approximate alignment of the line element
with the separatrix is a feature observed in all of our
simulations. It indicates that the particular initial shape
of the tracked line element is of minor importance. How-
ever, while the line element experiences continued
stretching, the underlying figure eight pattern continues
to rotate around the origin, so that the Lagrangian line
element never becomes completely aligned with the
separatrix. After 0.4 periods (¢t =1.14), we obtain a situ-
ation in which the line element crosses the separatrix as it
loops back to the vicinity of the free stagnation point.
Subsequently, this results in a folding event, as some
parts of the line element continue to wrap around one
vortex, whereas other parts become entrained by the oth-
er one. Over the second half period, several more of
these folding events occur, along with the continuous
stretching. At the end of only one period, each of the
two vortices is almost completely surrounded by several
segments of the material line element.

In order to demonstrate the influence of the amplitude
of the subharmonic component of the flow on the short-
time particle motion, we present in Fig. 6 results for the
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FIG. 5. The evolution over one period of a line element initially located between (—0.05,0) and (0,0), as well as the instantaneous
streamline pattern. We observe intense stretching along with several folding events, which are related to the crossing of the separa-
trix by sections of the line element. X ., =0.3 for =0.0, 0.85, 1.14, 1.71, 2.28, and 2.85, corresponding to 0, 0.3, 0.4, 0.6, 0.8, and 1.0
periods of the flow.
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X

FIG. 6. The evolution of a line element initially located between (—0.1,0) and (0,0) over one period for X, =0.1. Notice the
ejection of some line segments into the free stream and their subsequent reentrainment by neighboring vortex pairs.
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evolution of a line element initially placed between
(—0.1,0) and (0,0) over one period in a flow with a weak-
er subharmonic component: X, is now 0.1. We find
that the production of small scales near the origin and
generally in the vicinity of the pairing vortices is even
more pronounced than in the flow with the larger subhar-
monic component of Fig. 5. In particular, note that some
line segments are ejected into the free stream and con-
vected to neighboring vortex pairs which can then reen-
train them. This ejection mechanism had not been ob-
served for the stronger subharmonic perturbation,
Xpert =0.3. As will be discussed later, direct Navier-
Stokes simulations of pairing demonstrate the formation
of spiral arms of spanwise vorticity which are similar in
shape to the line element in Fig. 6. The above two simu-
lations indicate that small scales in the deformed line ele-
ment are not only generated by the ejection of the line
element, but also by the intense stretching and folding
near the vortex pair. However, especially in view of the
findings by Moser and Rogers [13], the ejection of spiral
arms of spanwise vorticity play a significant role in the
transition process of the mixing layer.

3. Formation of spiral arms and the topology of streamlines

We next investigate this ejection mechanism and the
role the subharmonic plays in the ejection in more detail.
For this purpose, it is helpful to focus on the streamline
pattern in the vicinity of the vortex pair near the origin.
Its qualitative evolution is determined by the coro-
tating motion of the nearest two point vortices and the
strain field created by all the other vortices in
the shear layer. Since we can think of these remaining
vortices as a row of vortex pairs about the points

-+ (—4,0),(—2,0),(2,0),(4,0), - - -, the time-averaged
strain field created by them near the origin can be ap-
proximated by the steady configuration of a row of point
vortices of strength 2" at the above locations. The veloc-
ity field due to this row of vortices from which the central
one has been removed is

sinh(y) Yy
= - — 2.5
u (I/Z)COSh(Try)—‘COS(‘th) (1/7)x2+y2 ) (2.5)
o sin(mx) x
v=( Uz)cosh(vy)—cos(-rrx)+(1/ﬂ)“x2+y2' (2.6)
Near the origin, we obtain with x,y ~O(e)
u=(mr/12)y+0(€?), 2.7)
v=(7/12)x +0(€?) , (2.8)

so that the strain field within which the vortex pair near
the origin rotates has the leading-order strength 7/12.
To capture the main features of this flow field in as simple
a way as possible, we focus on the problem of an isolated
pair of corotating point vortices located at (x,,y,;) and
(xy2,9,2)=(—x,; —¥,1) in an external strain field that is
intended to model the time-averaged effects due to all
other rotating vortex pairs. This pure straining motion is
represented by the stream function
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¥, (x,y)=(A4 /2m){(y*—x?)sin(a)cos(a)

+xy[cos¥(a)—sinX(a)]} , 2.9)

where a controls the direction of the principal axes and
A measures the strength of the strain field. For a=m/4,
the direction of the strain field is that seen by the vortices
in the infinite row of point vortices. If we render the
problem dimensionless in the same way as for the infinite
row of point vortices, i.e., by taking the distance / be-
tween the unperturbed vortex locations as the charac-
teristic length and the difference in the freestream veloci-
ties as the characteristic velocity, we obtain for the di-
mensionless stream function

Wx,y)=(172m){In[V (x —x,,)2+( —y,1)?]
+In[V (x +x,,)2+(y +,,)?1}

+S {(y2—x?)sin(a)cos(a)

+xy[cos?(a)—sin*(a)]} . (2.10)

Here, S=(AI?)/(2#T) is the dimensionless parameter
denoting the relative strengths of the point vortices and
the strain field. An important observation that should be
emphasized is that it is useful to study the streamline pat-
tern in a reference frame rotating with the instantaneous
angular velocity of the point vortex pair. In this frame,
the separatrices no longer rotate. Instead they only per-
form small oscillations around their time-averaged posi-
tions, so that their geometric shape becomes much more
helpful for understanding the deformation of fluid ele-
ments. Furthermore, in this rotating reference frame, the
point vortices remain on the x axis for all times. The
stream function in this rotating reference frame becomes

W(x,)=(1/2m) | In[V (x —x,, 2 +y?]

—— 2 2
+In[V/ (x Fx, 2y 2] — 2120
4x;,

+S {2y %sin(a)cos(a)

+xy[cos*(a)—sin*(a)]} . 2.11)

Figures 7(a) and 7(b) show the deformation of a line ele-
ment in a corotating vortex pair under strain S=w/12
for the different subharmonic perturbations of Figs. 5 and
6, respectively. Also shown are the streamline patterns in
the rotating reference frame. The line element deforma-
tion shows a striking similarity to Figs. 5 and 6, indicat-
ing that the corotating vortex pair under strain approxi-
mates the infinite vortex row configuration quite well. In
particular, we do not observe an ejection mechanism for
the stronger subharmonic perturbation, whereas in the
case of the weaker perturbation line segments are ejected
into the free stream, in correspondence to the infinite row
situation. This different behavior can be understood on
the basis of the streamline pattern in the rotating refer-
ence frame. For the stronger subharmonic perturbation,
the topology of the streamline pattern stays the same
over the whole period, i.e., the separatrix continually
closes around the individual vortices, so that in the rotat-
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FIG. 7. (a) An isolated corotating vortex pair in an external strain field of strength 7/12. Shown are the streamline patterns at
times =1.02 and 2.86 in a reference frame that rotates with the instantaneous angular velocity of the vortices. X, =0.3. Notice
the similarity of the deformed line element with that in Fig. 5. (b) Same as (a), but with X, =0.1 for times ¢t =1.9, 3.34, 7.26, and
8.64. The deformed line element has a strong similarity to that of Fig. 6. Note the topological change in the streamline pattern.
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ing reference frame the shape of the separatrix remains
that of a horizontal figure eight. For the weaker subhar-
monic perturbation, however, we observe a periodic
change in the streamline pattern’s topology, where the
separatrix changes from a horizontal figure eight to a de-
formed vertical figure eight. The nature of the streamline
patterns for the two different topologies is shown qualita-
tively in Fig. 8. The instantaneous motion of points
along the line element closely follows the separatrices of
the streamline pattern shown, and consequently, the
changes in the topology lead to successive ejections of
line element segments. Note that the above explanation
for the formation of spiral arms is purely kinematic. As
will be described below, this same topological transition
is present both for the vortex blob simulation as well as
the direct Navier-Stokes simulation.

While the above results indicate that the subharmonic
perturbation is necessary for the generation of small
scales by chaotic motion, they also indicate that the
smaller amplitude subharmonic leads to a more rapid
generation of small scales via the ejection mechanism
than the larger amplitude subharmonic. This observation
indicates that in an experiment strong forcing of a
subharmonic amplitude is not likely to accelerate the pro-
duction of small scales, in agreement with the experimen-
tal observations of several researchers.

B. Vortex blobs

As an intermediate step towards full Navier-Stokes
simulations, we next analyze the corresponding situation
for vortices with finite support, instead of point vortices.
More specifically, we use blobs with a Gaussian distribu-
tion in vorticity,

re—[r/a]2

’
‘ITO'2

(2.12)

-r sinh[7(y =y, )] T
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FIG. 8. The qualitative nature of the
streamline patterns between which the flow
shown in Fig. 7(b) alternates.

where I is the vortex strength, r is the distance from the
center of the blob, and o is a characteristic radius of the
blob. A review of such two-dimensional vortex methods
for flow simulation is provided by Leonard [20]. Because
the blobs distribute vorticity in space, the flow field simu-
lated is closer to the Navier-Stokes flow field than that
generated by the point vortices. On the other hand, a
shortcoming of the vortex blob approximation is that
vorticity associated with one vortex blob moves as one
entity without any deformation or diffusion. Hence, we
can consider the vortex blob model as an intermediate
step between the point vortex model and the Navier-
Stokes representation.

As in the point vortex model, we start with an infinite
row of blobs and give them a subharmonic perturbation
to set the vortices in motion. Their motion is due to the
induced velocity of the other vortices which can be ob-
tained by approximating all vortices except the nearest
one as point vortices (Nakamura, Leonard, and Spalart
[21]). The equations of motion then become

i = r sinh(2my .. )
vor 2 cosh(2my,o. ) —cos(2mx .. )
x 30!’ +y3'or
+ L e 2.13)
21r x 3’01’ +y 301’ ’
R § sin(27x . )
Yvor = 5

2 cosh(2my,o ) —cos(27x . )
2 2
_ Xvor ¥ Vor
r X yor o2
———e

- 2.14)
27 x2oe Y ior

The velocity field can also be obtained by approximating
all vortices except the nearest pair as point vortices,
hence:

2 2
_ (X=X F P =Yoo )

y _yvor 2

o

T cosh[m(y —y o) ] —cos[m(x —Xx 0. )]

-r sinh[7(y +y,..)] r

e
27 (x ~Xvor )2+(y ~Yvor )2

(x+x,0 2+ +p o)
y +yv0r - 2

4 cosh[m(y +y,o)]—cos[m(x +x,4)]

+— e
27 (X +X 4o P+ +Yy0r )

i , (2.15)
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B (Jc—:cvor)2~f-(y—yvur )
X~ Xyor o2

._ T sin[7(x —x )] r
y=?

r Sin[ﬂ-(x +xv0r)] T

cosh[m(y —y,o. )] —cos[m(x —x,..)] Com (X =Xy 2+ (Y —Yyor ) ¢

xRy

vor o2

x+x

4 cosh[m(y +y,o. )] —cos[m(x +x,,.)] s (X +xy0. 2+ (P + Y40, )? ¢

The above equations are integrated using a fourth-
order Runge-Kutta scheme. Again the periodicity of the
vortices is used to reduce the number of computations as
described in the section on point vortices.

1. Long-time dynamics

Corresponding to the above investigation of the point
vortex model, we now examine the long-term motion of
fluid particles through the use of Poincaré sections using
vortex blobs. For a vortex core size of 0 =0.1 and vari-
ous magnitudes of the subharmonic perturbation, we ob-
tain results very similar to those for point vortices shown
in Fig. 3. This indicates that as the vortex core is de-
creased from 0.1 to zero, the behavior of the point vortex
model is recovered in a smooth fashion, as there are no
added effects due to the singularity of the point vortices.

By changing the size of the core radius o, we can now
study the effect of varying the vorticity distribution. As
the core radius increases to 0.2 (Fig. 9), the size of the is-
lands around the blobs decreases [compare Fig. 9(a), 9(b),
and 9(c) with 3(a), 3(b), and 3(c)]. This decrease in the is-
land size is rather counterintuitive: as the vorticity
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FIG. 9. Poincaré map of particles originally seeded on the x
axis and the y axis plotted over a few hundred periods of vortex
motion; ¢ =0.2; (a) Xery =0. 1, (b) Xper, =0.25, (¢) X pery =0.3, (d)
Xpert =0.35, and (e) X, =0.4. As o increases, the region of in-
tense chaotic motion increases until the blobs merge, but de-
creases after the blobs merge.

(2.16)

spreads out more and because the entire vorticity moves
as one entity, one expects an increase in the area of the is-
land around the center of the blob. The decrease in the
area of the islands continues as we increase the subhar-
monic perturbation until the blobs merge (i.e., the loca-
tion of the vorticity maximum shifts to the point midway
between the pairing vortices, when X +0=0.5). As
we continue to increase the subharmonic perturbation,
the islands vanish [Fig. 9(d)] and later a new island forms
around the center of the merged blobs [Fig. 9(e)], i.e., the
originally hyperbolic stagnation point now becomes ellip-
tic. Similar trends are observed using vortex blobs with
larger core radii. In short, as the core radius increases,
the area of the chaotic region and, hence, mixing in-
creases until vortex merger but shrinks beyond the
merger.

In order to quantify the intensity of mixing, we use the
Lyapunov exponent, the estimation of which was out-
lined in the section on point vortices, cf. Fig. 4. The larg-
est exponent is positive in the chaotic regions and it in-
creases as X, is increased. This indicates that the in-
tensity of the mixing increases even though the mixing is
localized. As the blobs move closer to each other (or as
X pere is increased) the velocity gradients and the unsteadi-
ness are intensified in the region midway between the vor-
tices leading to high strain, which in turn leads to the ex-
tensive stretching. However, if the vortices merge (i.e.,
Xpery 0 >0.5), the fixed point at the center changes in
nature from hyperbolic to elliptic, thereby modifying the
strain field. As a result, if X, is increased further, the
unsteadiness decreases, leading to a reduction in the
Lyapunov exponent. Also, the intensity of mixing in-
creases as the radius of the blob decreases. Therefore,
mixing of fluid particles in the present model is a
compromise between the region of mixing and its intensi-
ty.

2. Short-time dynamics and streamline topology

As for the point vortex model, we next examine some
aspects of short-time mixing by tracking a small line ele-
ment seeded near the origin. For vortex blobs of core ra-
dii 0=0.1 with two different levels of subharmonic per-
turbations, X,.,=0.1 an 0.3, we find that after equal
times, the stretching and folding is more intense for the
case with the larger subharmonic perturbation. We can
determine a quantitative measure of the stretching by us-
ing a stretching parameter s defined by
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This stretching parameter increases with the magnitude
of the subharmonic perturbation. However, this trend is
reversed if we make our observations after an equal num-
ber of periods rather than at equal times. An equal num-
ber of periods corresponds to a larger time for the smaller
subharmonic perturbations due to the smaller induced
velocity at the vortex centers. The stretching parameter
can be redefined using the number of periods instead of
time as follows:

L

s'=iln ‘i‘o‘

N

b

where N denotes the number of periods. This form of the
stretching parameter decreases with increasing subhar-
monic amplitude, so that after the same number of
periods the flow with the smallest subharmonic perturba-
tion produces the largest amount of stretching and fold-
ing (Fig. 10).

The increase in intensity of mixing on a per period
basis is related to the topological transition described ear-
lier for the point vortex model. We observe this topologi-
cal change by again plotting the stream function in a
coordinate frame that moves with the pairing vortices.
Figure 11 displays the stream function for various times
up to a quarter of the period for the smaller subharmonic
perturbation. As previously observed for the point vor-
tex model, we see that the topology of the stagnation
point streamline changes from a horizontal to a vertical
figure eight pattern and back in one quarter of a period.
By virtue of the reflectional symmetries about the x and y
axes, similar streamline patterns are seen for successive
quarters of the period. When the topology changes to a
vertical figure eight, line elements can be ejected, and as a
result can undergo more intense stretching and folding
per period. This intensification of stretching and folding,
in turn, produces more small scales per period. On the
other hand, for the stronger subharmonic perturbation

-
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FIG. 10. Stretching of a line element at the end of one period
when 0=0.1; (a) X} =0.1 and (b) X,.;=0.3. Notice that
after one period the smallest subharmonic perturbation pro-
duces the largest stretching and folding, which appears to be re-
lated to the topological transition seen in the streamline topolo-
gy (Fig. 8).

1649

t= 0.01060

t= 1.58964

w((E2D))

05 ) -1

b

t= 211952

-1 0.5 ) 05y 1

FIG. 11. Streamline pattern in a coordinate frame that
moves with the vortices; X, =0.1, 0=0.1; (a) £=0.0106, (b}
t=1.5896, (c) t=1.8546, and (d) t =2.1195. Notice that the to-
pology changes from a horizontal « pattern to a vertical 8 pat-
tern and back to the horizontal o pattern.

no such topological transition occurs and hence the line
element remains confined to a more limited region.

ITII. NAVIER-STOKES CALCULATION

In order to assess the extent to which the behavior ob-
served for the point vortex and the vortex blob models is
reproduced in a viscously evolving mixing layer, we have
conducted a set of full Navier-Stokes simulations. For
comparison purposes, we track passive line elements in
Navier-Stokes flow fields characterized by different values
of fundamental and subharmonic perturbation ampli-
tudes, a, and a;. We use a pseudospectral simulation to
generate the flow fields in this section, which is a
modified version of the stratified shear-layer code of
Wang and Maxey [22]. The initial flow field consists of a
tanh velocity profile of the horizontal velocity component
as a base flow along with perturbations. These perturba-
tions are given by the eigenfunction corresponding to the
most unstable wave number from inviscid theory [23]
along with the same form of perturbation applied to the
subharmonic wave number. The phase of the subhar-
monic perturbation was selected such that it results in a
vortex pairing event, rather than in vortex tearing.

The simulation solves the rotational form of the in-
compressible Navier-Stokes equations in two dimensions:

(3.1)

u; +oXu);= —Pxi + é—uixjxj ,
where for our two-dimensional flow i=1,3. Here, u
denotes the velocity, P denotes the pressure, @ denotes
the velocity, and Re indicates the Reynolds number. We
solve these equations for the case of a temporal shear lay-
er, using periodic boundary conditions in the horizontal
direction. Thus, in order to satisfy the boundary condi-
tions in both directions we expand the velocity field in

(3.2)
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terms of its Fourier coefficients 4, as

Ug(X1,x3,1)=3, 3 Uk, k3, t)explik x)
kl k3

cos(kzx3), a=1

a=3, (3.3)

sin(k;x,) ,
where k; are the wave number vectors. We advance the
momentum equation in time using a second-order
Adams-Bashforth scheme on the nonlinear terms and a
second-order Crank-Nicolson scheme on the linear terms.
The continuity equation and pressure terms are satisfied
by applying the following filter to the Fourier coefficients
after the time advancement:

_ kik;
ij k2

A~

4] uj .

o=
ui_

In addition to solving for the flow field, we must also
solve for the time evolution of the particle positions, i.e.,
we need to integrate the velocities (dx; /dt =u;). The is-
sue here is how to interpolate the velocity field at the par-
ticle positions. We use the Hermite interpolation scheme
of Balachandar and Maxey [24], which takes advantage
of the spectral accuracy used in calculating the velocity
derivatives. We then apply a fourth-order Adams-
Bashforth method to advance the particle locations.

We should mention at this point the differences be-
tween the perturbations used to initialize the instabilities
in the Navier-Stokes simulation and the previous models.
For the Navier-Stokes simulation, we require both basic
and subharmonic perturbations, whereas in the point vor-
tex and vortex blob models we introduce a subharmonic
perturbation by displacing vortex pairs (changing the
pairing distance). The basic perturbations for these mod-
els are the vortices themselves. In addition to this
difference in basic perturbations between the Navier-
Stokes simulation and models, the subharmonic perturba-
tions also differ. In the point vortex and vortex blob
models, changes to the subharmonic perturbation modify
only the pairing distance. In the Navier-Stokes calcula-
tion, however, changing the subharmonic perturbation
results in modifications to not only the pairing distance
but also the effective core radius of the vortices. In the
vortex blob model the core radius is an independent pa-
rameter, and thus can be controlled separately from the
pairing distance. The fact that the subharmonic pertur-
bation in the Navier-Stokes flow affects both pairing dis-
tance and the effective core radius reflects the ability of
the vortices in the flow to be diffused and distorted. This
effect is absent in the models, where the vortices are con-
vected without change to their strength or structure. To
avoid any confusion about what we mean by subharmon-
ic perturbation, from this point on we refer to the pertur-
bation applied to the vortex models as changes to the
pairing distance, and reserve the term subharmonic per-
turbation to mean the classical perturbation used in the
Navier-Stokes simulations.

Because the subharmonic perturbation applied to the
Navier-Stokes simulation affects the flow in more ways
than mere modification of the pairing distance, we first
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must address how changes in the subharmonic perturba-
tions relate to the core radius and pairing distance in
preceding sections. After this “mapping” has been estab-
lished, we can then proceed to analyzing how well the
mechanisms for mixing found in the model flows apply to
the Navier-Stokes flow. To aid us in this goal, we exam-
ine the vorticity contours for simulations with different
values of basic and subharmonic perturbations in Figs.
12-15. The different levels of vorticity contours have
values 10,20,30 - - - 90% of the maximum vorticity. The
two innermost contours, corresponding to the 90% level,
encompass the two vortex centers (i.e., the locations of
maximum vorticity). The number of isocontours present
between the two vortex centers gives an indication of the
core radius, provided the vortex centers are approximate-
ly the same distance apart: as this number increases, the
core radius decreases. We take as a reference case Fig.
12, in which both the fundamental and the subharmonic
perturbation amplitudes have a value of 0.01 and then we
consider the effect of varying both these amplitudes one
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FIG. 12. Vorticity contours and two line elements (one locat-
ed at the stagnation point between the pairing vortices and the
other located at the stagnation point between vortex pairs) for a
2D Navier-Stokes flow plotted for 7=70; a,=0.01 and
a,=0.01. This equal amplitude simulation serves as the refer-
ence with which the other simulations are compared.
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at a time. In the reference case, there are three isocon-
tours between the two vorticity maxima. This number in-
creases to four if the subharmonic perturbation (a;) is de-
creased (while maintaining the same basic perturbation
amplitude), indicating that the core size decreases with a;
(Fig. 13). Conversely, when g, is increased to 0.02, the
core radius increases, which can be inferred from the fact
that the number of isocontours between the two vortices
has decreased to two (Fig. 14). Even more pronounced is
the increase in core radius if the basic perturbation is de-
creased to 0.002, because there is only one isocontour be-
tween the pairing vortices (Fig. 15). In addition, the vari-
ations in the core size with respect to variations in the
perturbation amplitudes can be seen visually, too, by su-
perimposing the contour plots.

However, it is difficult to visualize the variations in the
pairing distance using the vorticity contours. To study
these variations, we plot the time series of the vertical lo-
cation of the center of a pairing vortex (Fig. 16). From
these plots the rate of rotation (of the vortex center about
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FIG. 13. Vorticity contours and two line elements (one locat-
ed at the stagnation point between the pairing vortices and the
other located at the stagnation point between vortex pairs) for a
2D Navier-Stokes flow plotted for t=70; a,;=0.01 and
a,=0.005. Decreasing the subharmonic amplitude decreases
both X, and o. The overall effect of the decreased X .. and
the decreased o is to increase the stretching.
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the origin) can be determined. The rate of rotation in-
creases if the pairing distance decreases. Therefore, from
the rotation rates that can be estimated using Figs. 16(a),
16(b), and 16(c), it is clear that the average pairing dis-
tance (averaged over ¢t =0-75) increases when a, is de-
creased, and vice versa. Similarly, a decrease in the pair-
ing distance is observed if the basic perturbation is de-
creased [Fig. 16(d)]. In summary, the effect of increasing
the subharmonic perturbation is to increase the core ra-
dius o, but to decrease the pairing distance. Further, the
same trends in the pairing distance and the core radius
can be observed if the basic amplitude is decreased.
Having established a connection between the effects of
the basic and the subharmonic perturbations in the
Navier-Stokes simulations and the displacement pertur-
bations X, and core radius o in the vortex blob model,
we can now proceed to examine the mixing processes in
these cases. We do this by tracking two material line seg-
ments in the Navier-Stokes flow. The first line element
extends from x =0 to x =0.05, while the second line ele-

—0.625.
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FIG. 14. Vorticity contours and two line elements (one locat-
ed at the stagnation point between the pairing vortices and the
other located at the stagnation point between vortex pairs) for a
2D Navier-Stokes flow plotted for ¢=70; a,=0.01 and
a,=0.02. Increasing the subharmonic amplitude increases both
X, and o. The overall effect of the increased X, and the in-
creased o is to increase the stretching marginally.
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ment extends from x =—1.0 to —0.95 when ¢t=0, and 04 0.4

both are displayed in Figs. 12-15. We first address the 02 02

stretching of material lines. Recall that in the vortex - .

blob model the stretching parameter based on time s in- ° 0

creases as both the pairing distance and core radius de- * oz 02 °
creases. In the Navier-Stokes flow, as a, is decreased to oa o

0.005, the core radius decreases but the pairing distance o 20 40 &0 L
increases. Thus we have two competing phenomena as

far as the stretching is concerned. The more dominant 04 0.4

effect, in this case, is the change in the core radius, since 02 02

we observe an increase in stretching of the line elements > >

(compare Fig. 13 with Fig. 12). Further, the number of 0 0 .
folds also increase. When q; is increased to 0.02, the core -02 02

radius increases but the pairing distance decreases. These os ot

changes in core radius and pairing distance produce a "o 20 40 60 o 20 40 60

marginal increase in the stretching (Fig. 14).
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FIG. 15. Vorticity contours and two line elements (one locat-
ed at the stagnation point between the pairing vortices and the
other located at the stagnation point between vortex pairs) for a
2D Navier-Stokes flow plotted for #=70; a,=0.002 and
a;=0.01. Decreasing the basic amplitude increases both X pert
and o. The overall effect of the increased X, and the in-
creased o is to decrease the stretching. This combination of a;
and g corresponds to the largest X ., which, in turn, causes the
line element to remain trapped without any ejection. This is in
agreement with results from the point vortex model and the
blob model.

t t

FIG. 16. The y ordinate of the location of vorticity maximum
plotted as a function of time. The higher the frequency, the
larger the X .. (a) a;=0.01, a;=0.01; (b) a,=0.01, a,=0.005;
(¢) a;=0.01, a,=0.02; (d) a,=0.002 a,=0.01. (d) corresponds
to the largest X .., which leads to the suppression of ejection
(Fig. 15).

Next we consider the effect of varying the basic ampli-
tude on the stretching. If the basic perturbation is de-
creased, the stretching decreases, again due to the in-
creased o (Fig. 15). Further, the line element does not
get ejected in this case because the value of X ., is high.
This lack of ejection is very similar to those observed in
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FIG. 17. Two line elements (one located at the stagnation
point between the pairing vortices and the other located at the
stagnation point between vortex pairs) plotted at the end of one
period; a,=0.01; (a) a;,=0.005, (b) a,=0.01, and (c) a;,=0.02.
The lowest subharmonic amplitude case gives the smallest X ..,
which, in turn, causes the maximum stretching at the end of one
period (compare with Fig. 10).
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FIG. 18. Streamline pattern plotted in a coordinate frame
that moves with the vortices; a,=0.01 and a;=0.005; (a) t =58
and (b) z=60. Notice that this combination of amplitudes cor-
responds to the lowest X in the blob simulation and, conse-
quently, with this combination of amplitudes we see a topologi-
cal transition while for other combinations we do not (compare
with Fig. 11).

the point vortex model and the blob model. Conversely,
if the basic perturbation is increased to 0.05, the stretch-
ing increases because the core radius decreases. The line
elements for this case are very similar to those in Fig. 13
and hence not plotted. Overall, the behavior of stretch-
ing in the Navier-Stokes flow agrees well with that in the
vortex blob model.

So far we have considered stretching in terms of the
time. We now discuss the stretching parameter s’ on a
per period basis. In the blob simulations, after the same
number of periods, the stretching increased as the pairing
distance increased while maintaining a constant core ra-
dius. Similar results can be seen in the Navier-Stokes cal-
culations, although o cannot be held constant. Figure 17
shows the deformed line elements at the end of one
period for different values of the subharmonic perturba-
tion. As the amplitude of the subharmonic perturbation
decreases, the pairing distance increases and the flow
with the largest pairing distance (i.e., flow with lowest
subharmonic amplitude) shows the maximum stretching
[Fig. 17(a)]. As in the previous two models, the stagna-
tion point streamline of the flow with the largest pairing
distance plotted in a coordinate frame that moves with
the vorticity maximum shows a topological transition.
The separatrix changes from a horizontal to a vertical
figure eight, which enhances the stretching and folding of
the line element per period (Fig. 18). This should be com-
pared with Figs. 8 and 11. As a result, the flow that ex-
hibits such a topological transition produces the max-
imum small scales per period. Navier-Stokes flows with a
smaller pairing distance do not show such a topological
transition, which leads to decreased stretching of the line
element per period, and this result is similar to that in the
point vortex model and the blob model. Further, the
largest X, case (Fig. 15) does not exhibit any line ele-
ment ejection, which is also similar to the largest X,
cases in both the point vortex model and the blob model.

IV. DISCUSSION

We now attempt to make a connection with experi-
mental and computational mixing layer observations of
other authors. For this purpose, two different ap-
proaches are possible. In the first one, we can compare
the evolving shapes of the above line elements with the
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shapes of two-dimensional scalar interfaces or spanwise
vorticity contours in order to search for similarities. This
is based primarily on the fact that the unstable manifolds
in some sense act as attractors, and hence scalar inter-
faces or vorticity contours should somehow reflect their
shape. See Beigie, Leonard, and Wiggins [16] and Rom-
Keddar, Leonard, and Wiggins [17] for more details on
this. In particular, Beigie, Leonard, and Wiggins de-
scribe in detail the stretching and diffusion in a class of
chaotic tangles associated with fluids described by period-
ically forced two-dimensional dynamical systems. Their
study focuses on the material curve that lies initially on
the unstable manifold segment of the boundary of what
they call the “‘entraining turnstile’ lobe. However, since
they limit themselves to small amplitude perturbations,
they do not observe the topological transition of the
streamline pattern that represents one of the main
findings of our study. In the second approach, we inter-
pret the above line elements as projections in the span-
wise direction of wavy three-dimensional lines, and we
can then look for similarities between the evolution of
these lines and the stretching and amplification of weak
streamwise braid vorticity in plane mixing layers. As
mentioned in the introduction, this concept of analyzing
the deformation of passive line elements in a simple two-
dimensional flow field in order to draw conclusions about
the evolution of initially weak streamwise vorticity is
similar in spirit to the scenario developed by Bernal and
Roshko [9] to explain the formation of counterrotating
streamwise vortex structures in the braid region between
the Kelvin-Helmholtz rollers. They inferred the large
amplitude three-dimensional deformation of an initially
slightly perturbed spanwise vortex line near the free stag-
nation point in the braid region on the basis of the two-
dimensional deformation field of a frozen point vortex ar-
ray. We merely attempt to extend their concept from a
steady flow field to one that evolves in time as a result of
an additional subharmonic disturbance.

We begin by comparing the two-dimensional observa-
tions of other authors. Koochesfahani and Dimotakis
[15], in their study of mixing layer transition, visualize
the scalar field. In their figure 7(a), lobes can be seen to
evolve in between vortices proceeding toward a pairing
that resemble the ones of Figs. 12-15. We further note
the similarity between these lobes and those observed by
Meiburg and Newton [25] in a mixing layer in a different
context. In addition, the visualization by Koochesfahani
and Dimotakis of pairing vortices [their figure 7(b)]
shows these to be surrounded by narrow filaments of fluid
coming from both streams, resembling our Fig. 6(f).
Moser and Roger’s [13] computation of a scalar field at
Sc=1 in a pretransitional mixing layer undergoing the
second pairing (their figure 30) shows a similar lobe for-
mation and beginning filamentation of the isoconcentra-
tion lines near the surviving braid stagnation point. This
is an indication that a stretching and folding mechanism
similar to the one discussed above is present and can sub-
sequently affect the formation of small scales. It is in-
teresting to note that their picture was taken during the
second pairing, thereby giving the stretching and folding
mechanism in between pairs enough time to evolve to
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large amplitudes. As far as the spanwise vorticity field is
concerned, several authors (Martel, Mora, and Jimenez
[14], Moser and Rogers [13]) report the formation of
spiral arms of vorticity during a pairing event. For ex-
ample, the arms visible in figures 1(a) and 1(b) of Moser
and Rogers [13] resemble some of the folds visible in our

MEIBURG, NEWTON, RAJU, AND RUETSCH 52

Fig. 6, again suggesting a kinematic relationship.

As far as the second interpretation given above is con-
cerned, namely, in terms of stretched streamwise vortici-
ty, Fig. 19 shows the deformation of a three-dimensional
passive line initially perturbed sinusoidally in the span-
wise direction. By interpreting this line as a vortex line,
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FIG. 19. Interpretation of stretched line element initially located between (—0.1,0) and (0.1,0) for X.,=0.1 as a three-
dimensional passive line initially perturbed sinusoidally in the spanwise direction. Shown are side and top views for (a) 0, (b) 0.1, (c)
0.2, (d) 0.5 periods.
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we find that over one period a streamwise vortex can
wrap around a spanwise roller several times. In this way,
a new mechanism for the generation of strong streamwise
vorticity seems  possible: streamwise  vorticity
amplification by multiple wrapping. Furthermore, one
can speculate that a configuration in which streamwise
vortex tubes wrap around the Kelvin-Helmholtz rollers
more than once might allow for additional instability
modes such as a Widnall type vortex ring instability or
Crow type instability of neighboring vortex tubes. Mech-
anisms such as these can then further accelerate the small
scale production.

For a preliminary qualitative comparison as far as
streamwise vorticity deformation is concerned, we can
again refer to the results of Moser and Rogers [13].
Stretching and folding near the pairing vortices is detect-
able in the streamwise vorticity contours of their calcula-
tion concerning the growth of infinitesimal three-
dimensional perturbations, i.e., in their figure 8, which
again shows similarities with our Fig. 6. This folding be-
comes more pronounced with every successive pairing
event as the local Reynolds number increases and the rel-
ative importance of viscous diffusion decreases, thereby
rendering smaller scales visible. The authors themselves
refer to the “folding over” of the streamwise perturbation
vorticity “resulting in striated disturbances.” In addi-
tion, the streamwise vortex lines they show for the
engulfed braids after one pairing in a fully nonlinear tran-
sitional calculation (their figure 18) have already com-
pletely wrapped around the pairing vortices in a fashion
similar to the passive lines in our Fig. 19. It should be
pointed out that if these mechanisms become visible al-
ready at the relatively low Reynolds numbers accessible
by direct numerical simulation, they can be expected to
play an even more pronounced role at the often higher
experimental Reynolds numbers.

Finally, it should be emphasized that the small scale
production mechanisms identified and described here do
not exclude or replace those postulated by other investi-
gations, such as the secondary rollups of emerging thin
shear layers seen by Moser and Rogers [13] or the secon-
dary instability of high shear regions observed by
Nygaard and Glezer [26]. The processes discussed here,
rather, serve to amplify such two- and three-dimensional
inhomogeneities and accelerate their breakdown to small-
er scales.
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APPENDIX
Particle dynamics in the quasiperiodic region

We analyze the motion of a particle that starts a dis-
tance L from the left vortex along the horizontal line con-
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necting the two vortices a distance D apart, as shown in
Fig. 1. If we imagine that each pair of rotating vortices is
isolated from the effects of other rotating pairs, then the
vortex motion will be circular with characteristic fre-
quency @, given by

w,=T/(27*D?) . (A1)

For our model of an infinite row of point vortices, this re-
sult is asymptotically valid in the limit of very dominant
subharmonic motion (D—0 or, equivalently,
Xpert—>0.5). In a similar way, the frequency o of a parti-
cle that starts a small distance L from the vortex center is
given by

o=T/(47L?) . (A2)

Again, this result is asymptotically correct in the limit as
the particle position approaches the location of the point
vortex, (L —0,L /D <<1). If we consider a particle ini-
tially close to a point vortex in a flow with a strong

-0.6 -0.4 -0.2 0 0.2 0.4 0.

X
8:1
0.4 4
>
0.2 1
0
-0.2 E
-0.4 .
-0.6 0.4 0.2 0 0.2 0.4 0.6
b X

FIG. 20. Periodic orbits for D=0.8, i.e., X pert =0.1. (a)
n =1T7; note the reflectional symmetry across both axes; (b) n =8;
note the reflectional symmetry across only the x axis.
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FIG. 21. L, vs n plotted on a log-log scale. This figure shows
power law behavior L, ~n ~%, with «=0.521281.

subharmonic component, then we can approximate the
value of L that results in a frequency ratio w/w.=n,
where n is an integer, as

L,~D/V2n . (A3)

Figures 20(a) and 20(b) show the particle orbits corre-
sponding to n =7 and n =8 for D =0.8. Since the initial
particle locations are on the horizontal axis, all orbits
corresponding to odd n have reflectional symmetry across
both the x and y axes, while all orbits corresponding to
even n have reflectional symmetry across only the x axis.
Of course, between any two periodic orbits corresponding
to consecutive values of n lies a dense family of quasi-
periodic orbits whose frequency ratios are irrational, as
well as dense family of periodic orbits with higher fre-
quency ratios, n/m, where n is the integer number of
times a particle circles the vortex, and m is the integer
number of times the vortices circle each other.

The values of L, versus n, which were evaluated nu-
merically by means of a Newton iteration procedure, are

TABLE I. Comparison of values predicted using a=0.5 and
0.521281 with numerically computed “exact” values for Ls
through L,,.

Predicted with Predicted with

a=0.5 a=0.521281 Exact
Ls 0.137977 0.137985 0.13802
L 0.133288 0.13331 0.133 39
Ly, 0.129019 0.129 059 0.12919
L 0.125111 0.125172 0.12536
Ly 0.121 515 0.121 601 0.12185
Ly 0.118193 0.118 305 0.118 63

MEIBURG, NEWTON, RAJU, AND RUETSCH 52
14 T T T T T T T T
-1.6F
—
[e—
d 18-
£
2F
20F

2. 1 1 ! I 1 ! 1 1
-1,8 16 14 12 08 06 04 02 0

In(D)

FIG. 22. Ly vs D plotted on a log-log scale. This figure
shows power law form L~ D?, where 8=0.569 894.

shown in Fig. 21 plotted on a log-log scale. The figure
clearly shows a power law behavior L,~n"% with
a=0.521281. Here, a is computed by fitting a line
through the last two data points corresponding to n =21,
n=22. The value should be compared to the asymptotic
value described earlier, a=0.5, valid in the limit n — oo.
As n gets large, it is increasingly difficult to compute the
periodic orbits, since the particle motion is very near the
vortex center and consecutive L, values converge. For
this reason, it is useful to derive a formula that can pre-
dict these values. To this end, we define the function
F(n)as
1—L,

L,_
=l s (A4)

F(n)=
L,—L,

Hence, F(n) represents the ratio of consecutive distances
between neighboring L, values. Using the power law
form L, ~n~ ¢ gives

—a__ n —a

Fn;a)=—— - z1+(a+1)+0
n"*—(n+1)"¢ n

1

n2

(A5)

We can then solve for L, ; in terms of L, and L, _; to
get

Ln—l

1
L, — .
" F(n;a)

1+
F(n;a)

Lyyi= (A6)

The accuracy of the above formula for a given value of n
will depend on our choice of a, but is surprisingly accu-
rate even if we choose the limiting value of a=0.5. For
example, using the numerically computed values
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L,;=0.14893 and L,,=0.143 16, we compare the pre-
dicted values of L5 through L,, with their numerically
computed values in Table I.

For a given value of D, there will be a critical distance
L so that for an initial distance L > L, a particle will es-
cape the influence of the vortex around which it orbits.
Hence, for the value D =0.8 shown in Fig. 20, there is no
Lg orbit. Particles starting this far from the vortex
center enter the chaotic region. The transition value L

can be determined computationally, since it corresponds
to the initial particle position whose trajectory exactly
crosses the center stagnation point. Hence, one can inter-
pret L, as a crude measure of the “size” of the periodic
or quasiperiodic zone. The plot of Ly versus D is shown
in Fig. 22. The figure shows power law behavior for
0.2<D <0.9 with L;~D#, where B=0.569 894 is com-
puted by fitting a least squares line through the data
points on a log-log plot.
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